
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 8, AUGUST 2025 5509

Low-Complexity Chase Decoding of Hermitian
Codes With Improved Interpolation and

Root-Finding
Jiwei Liang, Jianguo Zhao, and Li Chen , Senior Member, IEEE

Abstract— This paper proposes the low-complexity Chase
(LCC) decoding for Hermitian codes, which is facilitated by both
the improved interpolation and root-finding. By identifying η
unreliable received symbols, 2η test-vectors are formulated, each
of which is decoded by the interpolation based Guruswami-Sudan
(GS) algorithm. To reduce both the interpolation complexity
and latency, the re-encoding transform (ReT) is introduced
through defining the Lagrange interpolation polynomials over the
Hermitian function fields. The interpolation polynomial is further
computed through module basis reduction (BR) that yields the
Gröbner basis that contains the desired polynomial. The BR
interpolation exhibits a greater parallelism than the conventional
Kötter’s interpolation. Moreover, the 2η root-finding processes
are facilitated by estimating the codewords directly from the
interpolation outcomes. It eliminates the re-encoding computation
for identifying the most likely candidate from the decoding output
list. It is also shown that the average LCC decoding complexity
can be further reduced by both assessing the re-encoding outcome
and decoding the test-vectors progressively. They can achieve an
early decoding termination once a codeword that satisfies the
maximum likelihood (ML) criterion is found. Our simulation
results demonstrate that the decoding complexity and latency can
be significantly reduced over the existing decoding algorithms.

Index Terms— Basis reduction, early termination, fast root-
finding, Hermitian codes, re-encoding transform.

I. INTRODUCTION

ALGEBRAIC-GEOMETRIC (AG) codes, which were first
introduced by Goppa [1], are a class of linear block

codes derived from an algebraic curve. AG codes comprise
a large family, including Reed-Solomon (RS) codes, elliptic
codes, Hermitian codes, and etc. The widely used RS codes
can be viewed as a special subclass of AG codes since they

Received 11 August 2024; revised 29 October 2024; accepted 22 December
2024. Date of publication 30 December 2024; date of current version
18 August 2025. This work was supported in part by the National Natural
Science Foundation of China (NSFC) under Grant 62071498; and in part
by the Natural Science Foundation of Guangdong Province under Grant
2024A1515010213. An earlier version of this paper was presented in part
at the 2023 IEEE Globecom Workshops, Kuala Lumpur, Malaysia [DOI:
10.1109/GCWkshps58843.2023.10464872]. The associate editor coordinating
the review of this article and approving it for publication was H. Mahdavifar.
(Corresponding author: Li Chen.)

Jiwei Liang and Jianguo Zhao are with the School of System Science
and Engineering, Sun Yat-sen University, Guangzhou 510006, China (e-mail:
liangjw59@mail2.sysu.edu.cn; zhaojg5@mail2.sysu.edu.cn).

Li Chen is with the School of Electronics and Information Technology,
Sun Yat-sen University, Guangzhou 510006, China, and also with Guangdong
Province Key Laboratory of Information Security Technology, Guangzhou
510006, China (e-mail: chenli55@mail.sysu.edu.cn).

Digital Object Identifier 10.1109/TCOMM.2024.3524035

are constructed from a straight line. However, the length of an
RS code cannot exceed the size of the finite field in which it is
defined, limiting its error-correction capability. Compared with
RS codes, general AG codes have greater codeword lengths,
leading to a stronger error-correction capability. Therefore,
AG codes have the potential to replace RS codes in many
practical communication and storage systems.

Similar to RS codes, AG codes can be decoded by
the syndrome-based decoding algorithms, in which the
error-correction is realized by determining the error locations
and error magnitudes, respectively. The Berlekamp-Massey
(BM) algorithm [2] and the Sakata algorithm [3] are well
known syndrome-based decoding algorithms for RS and Her-
mitian codes, respectively. They exhibit a complexity of O(n2)
and O(n7/3), respectively, where n is the codeword length.
But their error-correction capabilities are limited by half of
the code’s minimum Hamming distance. The Guruswami-
Sudan (GS) algorithm can correct errors beyond this half
distance bound by formulating the decoding as a curve-fitting
problem [4]. In comparison with syndrome-based decoding,
the GS algorithm can yield a significantly improved decoding
performance by increasing the interpolation multiplicity. The
GS algorithm consists of interpolation and root-finding, where
the former dominates the decoding complexity. It constructs
a minimum polynomial which has a zero of multiplicity m
over a set of interpolation points. The root-finding determines
the z-root of the minimum polynomial as the estimated mes-
sage, which is usually realized by the recursive coefficient
search (RCS) algorithm [5], [6], [7]. For the interpolation,
it can be realized by Kötter’s algorithm [8] which constructs
the interpolation polynomial by interpolating n interpolation
points iteratively. Interpolation can also be realized from the
perspective of the Gröbner basis of modules. The module
basis comprises a set of polynomials satisfying the interpo-
lation multiplicity and degree constraints. It can be initially
constructed and then reduced into the Gröbner basis, from
which the desired interpolation polynomial can be retrieved.
This is called the basis reduction (BR) interpolation. Lee
and O’Sullivan presented efficient BR interpolation algo-
rithms for both RS codes [9] and Hermitian codes [10].
Based on polynomial-ring matrix minimization, Nielsen and
Beelen proposed a fast realization of BR interpolation for
Hermitian codes [11], yielding a sub-quadratic complexity
in n. Beelen et al. further generalized and improved the

0090-6778 © 2024 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 27,2025 at 02:36:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1725-1901

5510 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 8, AUGUST 2025

computation method from [11] for general AG codes [12],
[13]. On the other aspect, it has been shown that interpolation
can be facilitated by the re-encoding transform (ReT) [14].
It has been applied to reduce the interpolation complexity in
decoding RS and elliptic codes [14], [15].

The soft-decision development of GS decoding, i.e., alge-
braic soft decoding (ASD) algorithm, was introduced by
Kötter and Vardy for RS codes [16]. The ASD algorithm
enhances the decoding performance by converting reliability
information into interpolation multiplicity. Chen et al. [17]
and Lee et al. [18] later proposed the ASD algorithm for
Hermitian codes using Kötter’s interpolation and the BR
interpolation, respectively. Chase decoding is another impor-
tant algebraic soft-decision decoding approach. Although the
complexity of Chase decoding is exponential in nature, it often
exhibits performance and complexity advantages over other
algebraic soft-decision decoding methods, especially in decod-
ing high-rate codes. In Chase decoding, 2η test-vectors can
be formulated by identifying η unreliable received symbols.
The decoding is performed for each test-vector. By exploit-
ing the similarity among all test-vectors, the low-complexity
Chase (LCC) decoding was proposed for RS codes [19]
using Kötter’s interpolation. The common element interpo-
lation can be performed once for all test-vectors, while the
uncommon element interpolation can be further performed
in a binary tree growing fashion. With the same test-vectors
formulation, LCC decoding of Hermitian codes was proposed
by Wu et al. [20]. With a similar low-complexity Kötter’s
interpolation, it however has not been facilitated by the ReT.
Wan et al. [21] proposed the LCC decoding facilitated by
the ReT for elliptic codes. However, it imposes a restriction
on the number of unreliable positions in forming the test-
vectors. Moreover, despite the fact that interpolation usually
dominates the complexity of GS decoding, in LCC decoding,
the root-finding needs to be performed for 2η decoding events.
Its complexity becomes significant as η increases. Therefore,
it is also important to reduce the complexity of root-finding in
LCC decoding. Meanwhile, the RCS algorithm estimates the
message symbols in a serial manner, which inevitably results in
a large decoding latency. Addressing this, the factorization-free
algorithm [22] that directly computes the estimated codewords
from the interpolation outcomes has been introduced for
LCC decoding of RS codes. Recently, the ReT-assisted LCC
decoding of Hermitian codes was proposed by the authors [23]
using Kötter’s interpolation. It is also facilitated by the fast
factorization (FF) which is generalized from the root-finding
algorithm in [22]. However, as mentioned above, Kötter’s
interpolation cannot process all test-vectors in a fully parallel
manner. Both the LCC decoding complexity and latency can
be reduced by the more advanced interpolation approach.

This paper proposes the LCC decoding for Hermitian codes,
which is facilitated by both the ReT-assisted BR interpolation
and the fast root-finding (FRF). The major contributions of
this work are summarized as follows:

1) By defining Lagrange interpolation polynomials over
the Hermitian function fields, the ReT is introduced to
reduce both interpolation complexity and latency. It first

shifts the interpolation points based on the code’s linear
property, and then transforms them by extracting the
common factor of module basis polynomials. We also
present an improved method to choose the re-encoding
points. Therefore, the restriction on the number of unre-
liable positions in [21] has been lifted. This yields a
more flexible formulation of the decoding test-vectors.

2) The ReT-assisted BR interpolation is performed to
obtain the interpolation polynomial of each test-vector,
enhancing the LCC decoding efficiency for Hermi-
tian codes. The common computation first constructs
a partial interpolation module basis. The uncommon
computation then completes the module basis construc-
tion for each test-vector and reduces them into their
respective Gröbner bases. The interpolation polynomials
w.r.t. each test-vector can be retrieved from the Gröbner
bases. It exhibits a greater parallelism than Kötter’s
interpolation.

3) The FRF is proposed to facilitate the 2η root-finding
processes. It computes the estimated codeword symbols
in parallel and removes the need of encoding the esti-
mated messages for identifying the most likely codeword
candidate from the decoding output list. Unlike the FF
in [23], it makes a better usage of the interpolating poly-
nomial to indicate the error locations, further reducing
the decoding complexity.

4) Two strategies for terminating the Chase decoding
earlier are proposed, eliminating the redundant com-
putations and adapting the decoding complexity to the
reliability of received information. We show that the
re-encoding can produce a Hermitian codeword that
satisfies the maximum likelihood (ML) criterion [24],
[25]. In this case, the decoding can be terminated
without executing the following interpolation and root-
finding. Meanwhile, decoding of the test-vectors can be
processed progressively based on their reliabilities [26],
[27]. That says a more reliable test-vector will be
decoded prior to the less reliable one. This enables an
early termination for the decoding.

The rest of this paper is organized as follows. Section II pro-
vides background knowledge for the proposed LCC decoding
of Hermitian codes. Section III introduces the test-vectors for-
mulation and the ReT. Section IV introduces the ReT-assisted
BR interpolation. Section V introduces the FRF. Section VI
introduces early termination strategies for the LCC decod-
ing. The decoding complexity and latency are analysed in
Section VII. The decoding performance is demonstrated in
Section VIII. Finally, Section IX concludes the paper.

II. BACKGROUND KNOWLEDGE

This section presents the background knowledge of the
proposed work, including the encoding of Hermitian codes
and the GS decoding algorithm.

A. Hermitian Codes

Let Fq = {σ0, σ1, . . . , σq−1} denote the finite field of size
q. Let Fq[X,Y] denote the bivariate polynomial ring defined

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 27,2025 at 02:36:20 UTC from IEEE Xplore. Restrictions apply.

LIANG et al.: LCC DECODING OF HERMITIAN CODES WITH IMPROVED INTERPOLATION AND ROOT-FINDING 5511

over Fq . An affine Hermitian curve defined over Fq can be
written as [28]

Hw = Y w + Y −Xw+1, (1)

where w =
√
q and the curve has a genus g = w(w−1)

2 .
Note that Hermitian codes are constructed over finite fields
with the field size being a square. There are w3 affine points
Pj = (xj , yj) that satisfy Hw(xj , yj) = 0, and a point
at infinity P∞. Let P denote the set of affine points P =
{Pj = (xj , yj) | Hw(xj , yj) = 0}, and hence |P| = w3. The
coordinate ring of Hw is

R = Fq[X,Y]/ < Y w + Y −Xw+1 > . (2)

Let x and y denote the residue classes of X and Y , respec-
tively. The pole basis Lw of a Hermitian curve comprises
a set of bivariate monomials ϕa(x, y) = xixyiy that exhibit
an increasing pole order at P∞ as Lw = {ϕa|υP∞(ϕ−1

a) <
υP∞(ϕ−1

a+1)}, where υP∞(ϕ−1
a) = υP∞((xixyiy)−1) = w·ix+

(w + 1) · iy , 0 ≤ ix ≤ w and iy ≥ 0. For each Pj , there also
exists a zero basis comprising polynomials with an increasing
zero order (or multiplicity) at the point, the zero basis are [29]

ψPj ,v(x, y) = (x− xj)
λ[(y − yj)− xw

j (x− xj)]δ, (3)

where (λ, δ) ∈ N and v = λ+ (w + 1)δ.
Definition 1: For an (n, k) Hermitian code of length n and

dimension k, given a message polynomial

f(x, y) = f0ϕ0 + f1ϕ1 + · · ·+ fk−1ϕk−1 ∈ L(µP∞), (4)

where f0, f1, . . . , fk−1 ∈ Fq are the message symbols, µ =
k+g−1 and L(µP∞) is the Riemann-Roch space defined by
µ and P∞, the codeword is generated by

c = (c0, c1, . . . , cn−1) = (f(P0), f(P1), . . . , f(Pn−1)), (5)

where {P0, P1, . . . , Pn−1} ⊆ P and its index set is denoted
by [0 : n− 1] = {0, 1, . . . , n− 1}.

For an (n, k) Hermitian code, the Riemann-Roch theo-
rem [30] provides the relationship between µ and υP∞(ϕ−1

k−1)
as

υP∞(ϕ−1
k−1) ≤ µ. (6)

B. The GS Decoding

Given a received word ω = (ω0, ω1, . . . , ωn−1) ∈
Fn

q , the set of interpolation points is denoted by P =
{(P0, ω0), (P1, ω1), . . . , (Pn−1, ωn−1)}. Let R[z] denote the
polynomial ring defined over R. For GS decoding of an (n, k)
Hermitian code, the following definitions are needed.

Definition 2: Monomials ϕaz
b ∈ R[z] are ordered accord-

ing to their (1, wz)-weighted degrees that are defined as

deg1,wz
ϕaz

b = υP∞(ϕ−1
a) + wzb, (7)

where wz = υP∞(ϕ−1
k−1). The (1, wz)-reverse lexicographic

(revlex) order can be established as follows. Given two
monomials ϕa1z

b1 and ϕa2z
b2 , ord(ϕa1z

b1) < ord(ϕa2z
b2),

if deg1,wz
ϕa1z

b1 < deg1,wz
ϕa2z

b2 , or deg1,wz
ϕa1z

b1 =
deg1,wz

ϕa2z
b2 and b1 < b2.

Definition 3: Given a polynomial Q(x, y, z) =∑
a,b∈N Qabϕa(x, y)zb, the (1, wz)-weighted degree of

Q is deg1,wz
Q = max{deg1,wz

ϕaz
b | Qab ̸= 0} and its

leading order is lod(Q) = max{ord(ϕaz
b) | Qab ̸= 0}.

Note that in decoding an (n, k) Hermitian code, polynomi-
als are organized under the (1, wz)-revlex order. Given two
polynomials Q1 and Q2, we claim Q1 < Q2, if lod(Q1) <
lod(Q2).

The interpolation constraint for a polynomial Q in R[z] is
explained as follows. Given an interpolation point (Pj , ωj),
if a polynomial Q can be written as

Q =
∑

α,β∈N
Q

(Pj ,ωj)
α,β ψPj ,α(z − ωj)β , (8)

where Q(Pj ,ωj)
α,β ∈ Fq and Q

(Pj ,ωj)
α,β = 0 for α + β < m, Q

interpolates (Pj , ωj) with a multiplicity of m. In particular,
when m = 1, Q’s interpolation condition at (Pj , ωj) can be
simplified into its evaluation at the point [20].

Theorem 1 [31]: Given the interpolation polynomial Q
which has a zero of multiplicity m over the n interpolation
points, if m(n − |{j | f(Pj) ̸= wj ,∀j ∈ [0 : n − 1]}|) >
deg1,wz

Q, Q(x, y, f) = 0, or (z − f)|Q.
With a received word ω, interpolation constructs the minimum
polynomial Q with respect to the (1, wz)-revlex order. This
can be realized by Kötter’s interpolation, which starts with
a polynomial set and updates its polynomials in an iterative
manner. Finally, the minimum polynomial in the set will be
chosen as the interpolation polynomial Q. The z-roots of Q
will then be determined as the estimated message.

The interpolation polynomial Q can also be determined by
BR interpolation. It first constructs a basis of the module which
contains polynomials that satisfy the interpolation constraints.
It will then be reduced into a Gröbner basis [10], from which
Q can be retrieved. Let R[z]l = {Q ∈ R[z] | degzQ ≤
l}, where l is the decoding output list size. For a set of
interpolation points S, the interpolation ideal IS,m is defined
as a set of all polynomials over R[z] that interpolate S with
a multiplicity of m. The interpolation module IS,m is defined
as IS,m = IS,m ∩ R[z]l. In the proposed LCC decoding,
m = l = 1. For simplicity, we use IS instead of IS,1.

In order to introduce the BR interpolation, the following
definitions can be further introduced.

Definition 4: Given an affine point index set J ⊆ [0 : n−
1], A(J) = {xj | j ∈ J }. Given σ ∈ A(J), Bσ(J) =
{yj | (σ, yj) ∈ P, j ∈ J }. C(J) = {j | xj ∈ A(J)}.

Definition 5: The set of affine points defined by J forms
a maximum semi-grid if |Bxj (J)| = w,∀xj ∈ A(J).

Example 1: Consider the Hermitian curve H2 = x3+y2+y
defined over F4 = {σ0, σ1, σ2, σ3}. There are eight affine
points on H2: P0 = (σ0, σ0), P1 = (σ0, σ1), P2 = (σ1, σ2),
P3 = (σ1, σ3), P4 = (σ2, σ2), P5 = (σ2, σ3), P6 = (σ3, σ2),
P7 = (σ3, σ3). Given J = {0, 1, 2}, A(J) = {σ0, σ1},
Bσ0(J) = {σ0, σ1} and Bσ1(J) = {σ2}. Since |Bσ0(J)| =
2 but |Bσ1(J)| = 1, the affine points defined by J do not form
a maximum semi-grid. However, the affine points defined by
C(J) = {0, 1, 2, 3} form a maximum semi-grid.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 27,2025 at 02:36:20 UTC from IEEE Xplore. Restrictions apply.

5512 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 8, AUGUST 2025

Given an affine point index set J ⊆ [0 : n−1], the Lagrange
interpolation polynomial defined by J is written as

LJ ,j(x, y) =
∏

α∈A(J)\{xj}

x− α

xj − α

∏
β∈Bxj

(J)\{yj}

y − β

yj − β
.

(9)

Note that LJ ,j(Pj) = 1 and LJ ,j(Pj′) = 0, if j ̸= j′,
where j, j′ ∈ J . Based on the above definitions, we define
the following polynomials

G(x) =
∏

α∈A([0:n−1])

(x− α) (10)

and

K(x, y) =
∑

j∈[0:n−1]

ωjL[0:n−1],j(x, y), (11)

As a result, K(Pj) = ωj . Note that G and z −K interpolate
all points of P with a multiplicity of one. Let IP,m denote the
interpolation module for P. As a module over R, IP,m can
be generated by the following l + 1 polynomials [10]

H(κ) = Gm−κ(z −K)κ, if 0 ≤ κ ≤ m, (12)

H(κ) = zκ−m(z −K)m, if m < κ ≤ l. (13)

We can also view IP,m as a module that is defined over Fq[x].
It can be generated by the following basis

MP = {M (s) | M (s) = y(s mod w)H(⌊ s
w ⌋)}, (14)

where 0 ≤ s ≤ lw+w−1. If IP,m is understood as a module
over Fq[x], the computation of the desired Gröbner basis can
be realized efficiently. Given P and ω, polynomials G and K
can be defined. They constitute the module generators of (12)
and (13), which lead to the module basis construction defined
by (14). Afterwards, MP will be reduced into a Gröbner
basis, in which the minimum polynomial will be chosen as
the interpolation polynomial Q.

III. TEST-VECTORS FORMULATION AND RE-ENCODING
TRANSFORM

This section introduces the test-vectors formulation and the
re-encoding transform of the interpolation points.

A. Test-Vectors Formulation

Although the test-vectors formulation in this work is iden-
tical to previous LCC decoding schemes, we include it for
completeness. Assume that a Hermitian codeword c is trans-
mitted and χ = (χ0, χ1, . . . , χn−1) is the channel output. The
reliability matrix Π ∈ Rq×n with entries πi,j = Pr(χj | cj =
σi) can be obtained, where 0 ≤ i ≤ q− 1 and 0 ≤ j ≤ n− 1.
Let iIj = arg maxi{πi,j} and iIIj = arg maxi,i̸=iIj

{πi,j}. The
two most likely decisions of codeword symbol cj are ωI

j = σiIj

and ωII
j = σiIIj

. The following likelihood ratio is defined to
assess the reliability of χj

γj =
πiIj ,j

πiIIj ,j

, (15)

Fig. 1. Index sets of the LCC decoding algorithm.

where γj ∈ [1,∞). A greater γj indicates that χj is more
reliable, and vice versa. By sorting γj in a descending
order, a new symbol index sequence j0, j1, . . . , jn−1 can
be obtained. It indicates γj0 ≥ γj1 ≥ · · · ≥ γjn−1 . Let
Θ = {j0, j1, . . . , jn−η−1} denote the index set of the n − η
most reliable symbols, and its complementary set is Θc = [0 :
n− 1]\Θ. Therefore, all test-vectors can be written as

ωu = (ω(u)
j0
, ω

(u)
j1
, . . . , ω

(u)
jn−1

), (16)

where u = 0, 1, . . . , 2η−1, among which ω(u)
j = ωI

j , if j ∈ Θ;
and ω(u)

j = ωI
j or ωII

j , if j ∈ Θc. Since there are two decisions
for each of the η unreliable symbols, 2η test-vectors can be
formulated. This leads to 2η sets of interpolation points that
are defined as

P(u) = {(Pj0 , ω
(u)
j0

), (Pj1 , ω
(u)
j1

), . . . , (Pjn−1 , ω
(u)
jn−1

)}. (17)

Note that all test-vectors share n − η common interpolation
points (Pj , ω

(u)
j),∀j ∈ Θ. Given J ⊆ [0 : n − 1], we use

P(u)
J to denote the subset of interpolation points in P(u) as

P(u)
J = {(Pj , ω

(u)
j) | j ∈ J }. Therefore, P(u) can be further

partitioned into P(u)
Θ and P(u)

Θc .

B. Re-Encoding Transform

We now introduce the re-encoding transform for P(u).
It shifts the received word with a regenerated codeword based
on the code’s linear property. The shifted received word has
some zero entries. The set of interpolation points can be
transformed accordingly, leading to a reduced interpolation
complexity.

For each test-vector, some interpolation points will be
chosen from P(u)

Θ for the re-encoding. Let Γ ⊆ Θ denote
the index set of the re-encoding points. Let ξ = |Γ| denote
the number of re-encoding points. Let Γc = [0 : n− 1]\Γ and
Γ = Γc ∩ Θ. For a better illustration, the above mentioned
index sets are shown in Fig. 1. With the received word ω,
the re-encoding polynomial KΓ(x, y) ∈ L(µP∞) needs to be
constructed. Based on the Lagrange interpolation polynomial,
the re-encoding polynomial KΓ can be defined as

KΓ(x, y) =
∑
j∈Γ

ωjLΓ,j(x, y). (18)

Lemma 1: The re-encoding polynomial KΓ satisfies
KΓ(Pj) = ωj ,∀j ∈ Γ. Furthermore, if ξ ≤ w⌊k−g

w ⌋ and
the affine points defined by Γ form a maximum semi-grid,
KΓ ∈ L(µP∞).

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 27,2025 at 02:36:20 UTC from IEEE Xplore. Restrictions apply.

LIANG et al.: LCC DECODING OF HERMITIAN CODES WITH IMPROVED INTERPOLATION AND ROOT-FINDING 5513

Fig. 2. Block diagram of the proposed LCC decoding algorithm.

Note that the re-encoding using KΓ can be considered as
the erasure decoding using Lagrange interpolation. Based on
Lemma 1, Γ will be chosen from Θ for the re-encoding.
We further introduce the following definition.

Definition 6: Given an affine point index set J ⊆ [0 : n−
1], S(J) = {j | |Bxj

(J)| = w}.
Note that the affine points defined by S(J) form a max-

imum semi-grid and |S(J)| ≤ |J |. Based on Lemma 1, if
|S(Θ)| ≥ w⌊k−g

w ⌋, w⌊k−g
w ⌋ positions will be chosen as Γ

such that Γ = S(Γ) and Γ ⊆ Θ. Otherwise, Γ = S(Θ).
The re-encoding polynomial KΓ will be constructed with the
re-encoding points defined by Γ.

Example 2 (Continued): Consider the (8, 5) Hermitian code
defined over F4. Let {j0, j1, . . . , j7} = {4, 6, 0, 3, 5, 7, 1, 2}.
First, let η = 1. Θ = {4, 6, 0, 3, 5, 7, 1}. Θc = {2}.
We first obtain S(Θ) = {4, 6, 0, 5, 7, 1}. Since |S(Θ)| = 6 >
w⌊k−g

w ⌋ = 4, Γ = {0, 1, 4, 5}, {0, 1, 6, 7} or {4, 5, 6, 7}.
Secondly, let η = 3. Θ = {4, 6, 0, 3, 5}. Θc = {7, 1, 2}.
We first obtain S(Θ) = {4, 5}. Since |S(Θ)| = 2 < w⌊k−g

w ⌋ =
4, Γ = S(Θ) = {4, 5}.

Hence, the re-encoding codeword h = (h0, h1, . . . , hn−1) ∈
Fn

q can be generated by

hj = KΓ(Pj), ∀j ∈ [0 : n− 1]. (19)

Note that hj = ωj , if j ∈ Γ. Armed with the above knowledge,
all Chase decoding test-vectors can be transformed by

ωu → zu : z(u)
j = ω

(u)
j − hj ,∀j ∈ [0 : n− 1]. (20)

Note that z(u)
j = 0, if j ∈ Γ. Consequently, the transformed

test-vectors become

zu = (z(u)
j0
, z

(u)
j1
, . . . , z

(u)
jn−1

). (21)

This leads to 2η sets of transformed interpolation points that
are defined as

P′u = {(Pj0 , z
(u)
j0

), (Pj1 , z
(u)
j1

), . . . , (Pjn−1 , z
(u)
jn−1

)}. (22)

Note that S(Θ) ∩ C(Θc) = ∅. Since Γ ⊆ S(Θ), the x-
coordinate of points defined by Γ are not contained in A(Θc).
Hence, among all test-vectors there are ξ common points
defined by Γ. Their z-coordinates are transformed to zero.
The transformed test-vectors still maintain their z-coordinate
disparity only in Θc. Moreover, the above ReT lifts the
restriction on the number of unreliable positions in [21]. This
yields a more flexible test-vectors formulation.

IV. THE BR INTERPOLATION

This section introduces the BR interpolation for the LCC
decoding of Hermitian codes. The low complexity BR interpo-
lation consists of the common computation for all test-vectors
and the uncommon computation for each individual one.
During the common computation, a partial interpolation
module basis is constructed. Afterwards, the uncommon com-
putation further completes the module basis construction
for each test-vector and reduces them into their respective
Gröbner bases. The desired interpolation polynomials w.r.t.
each test-vector can be retrieved from the Gröbner bases. A
block diagram of the proposed algorithm is shown in Fig. 2.
We begin with introducing the module basis isomorphism.

A. Module Basis Isomorphism

In the LCC decoding, each test-vector is decoded by the GS
algorithm with m = l = 1. Hence, for test-vector ωu, (12) are
simplified into

H(κ)
u = G1−κ(z −Ku)κ, (23)

where

Ku =
∑

j∈[0:n−1]

ω
(u)
j Lj(x, y) (24)

and κ = 0 or 1. It can be used to generate a module for the
interpolation points of P(u). Let IP(u) denote the interpolation
module for P(u). Based on (14), IP(u) can be generated by
the following module basis

MP(u) = {M (s)
u | M (s)

u = H(⌊ s
w ⌋)

u y(s mod w), 0 ≤ s < 2w}.
(25)

Let IP′u denote the interpolation module for the transformed
points P′u. The following lemma describes the relationship
between the minimum polynomials of IP(u) and IP′u .

Lemma 2: Qu is the minimum polynomial of IP(u) iff
Q′u(x, y, z) = Qu(x, y, z +KΓ) is also the one of IP′u .

Therefore, the minimum polynomial Qu of IP(u) can be
obtained by Qu(x, y, z) = Q′u(x, y, z − KΓ). Note that
polynomial G can be written as

G = GΓGΓc , (26)

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 27,2025 at 02:36:20 UTC from IEEE Xplore. Restrictions apply.

5514 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 8, AUGUST 2025

where

GΓ(x) =
∏

α∈A(Γ)

(x− α) (27)

and

GΓc(x) =
∏

α∈A(Γc)

(x− α). (28)

Based on the above mentioned test-vectors formulation,
among the n − η common interpolation points shared by the
transformed test-vectors, the z-coordinates of ξ re-encoding
points are set to zero, i.e., (Pj , 0),∀j ∈ Γ. Therefore, based
on zu and P′u, K ′

u can be defined as

K ′
u =

∑
j∈[0:n−1]

z
(u)
j · Lj

=
∑
j∈Γ

0 · Lj +
∑
j∈Γc

z
(u)
j · Lj

=
∑
j∈Γc

z
(u)
j ·

∏
α∈A(J)\{xj}

x− α

xj − α
·

∏
β∈Bxj

(J)\{yj}

y − β

yj − β

=
∑
j∈Γc

z
(u)
j ·

∏
α∈A(Γ)

x− α

xj − α
· LΓc,j

= GΓ ·
∑
j∈Γc

z
(u)
j

GΓ(xj)
· LΓc,j . (29)

Polynomials G and K ′
u interpolate the points of P′u with a

multiplicity of one. Based on (26) and (29), GΓ becomes the
common factor of G and K ′

u. Hence, entries of the module
basis MP(u) can be further transformed, resulting in a module
basis isomorphism. Let

z̃
(u)
j =

z
(u)
j

GΓ(xj)
,∀j ∈ Γc. (30)

For the set of transformed interpolation points P′u, its subset
{(Pj , z

(u)
j) | j ∈ Γc} can be further transformed into

P̃u = {(Pj , z̃j) | j ∈ Γc}. (31)

Let IP̃u
denote the interpolation module for P̃u. The following

bijective mapping is an Fq[x]-module isomorphism between
IP′u and IP̃u

ϑ : IP′u → IP̃u

Q′u(x, y, z) = GΓQ̃u(x, y,
z

GΓ
) → Q̃u(x, y, z). (32)

Let us define

K(u)
Γc =

∑
j∈Γc

z̃
(u)
j LΓc,j . (33)

The module basis of IP̃u
can be defined as

MP̃u
= {M̃ (s)

u | M̃ (s)
u = H̃(⌊ s

w ⌋)
u y(s mod w)}, (34)

where

H̃(κ)
u = G1−κ

Γc (z −K(u)
Γc)κ, (35)

κ = 0 or 1, and 0 ≤ s < 2w.

Lemma 3: MP̃u
is a basis for the interpolation module

IP̃u
.

Based on (35), the entries of MP̃u
are

M̃ (s)
u = GΓcys, 0 ≤ s < w, (36)

M̃ (s)
u = (z −K(u)

Γc)y(s mod w), w ≤ s < 2w. (37)

Lemma 4: Assume that Qu and Q̃u are the minimum
polynomial of IP(u) and IP̃u

, respectively, and w̃z = wz − ξ.
Their weighted degrees satisfy deg1,wz

Qu = deg1,w̃z
GΓ +

deg1,w̃z
Q̃u.

Lemma 4 implies that polynomials in IP̃u
are organized

under the (1, w̃z)-revlex order. The relationship between the
minimum polynomials of IP(u) and IP̃u

is described as
follows.

Lemma 5: Given Q̃u as the minimum polynomial of IP̃u
,

the minimum polynomial Qu of IP(u) can be obtained by

Qu(x, y, z) = GΓ(x)Q̃u(x, y,
z −KΓ

GΓ
). (38)

Therefore, with P̃u, the isomorphic module basis MP̃u
can

be constructed. It is further reduced into the desired Gröbner
basis which contains Q̃u. It can then be restored into the
desired interpolation polynomial Qu. Be aware that H̃(κ)

u has
lower x-degree than H(κ)

u , which results in a reduced basis
reduction complexity. The above procedures can be catego-
rized into the common computation (in basis reduction) and
the remaining uncommon computation (in basis construction
and their reduction), which are described in the following
subsections.

B. Common Computation

Based on (36) and (37), in all the module basesMP̃u
, M̃ (0)

u ,
M̃

(1)
u , . . . , M̃ (w−1)

u are the common entries, while M̃
(w)
u ,

M̃
(w+1)
u , . . . , M̃ (2w−1)

u are the uncommon ones. Therefore,
GΓc can be computed once and shared by the decoding of all
test-vectors. Since

K(u)
Γc = KΓ +K(u)

Θc , (39)

where

KΓ =
∑
j∈Γ

z̃
(u)
j LΓc,j (40)

and

K(u)
Θc =

∑
j∈Θc

z̃
(u)
j LΓc,j , (41)

polynomials M̃ (s)
u , where w ≤ s < 2w, can be rewritten as

M̃ (s)
u = (z −KΓ −K

(u)
Θc)y(s mod w). (42)

Hence, in constructing the 2η module bases, KΓ can also be
computed once and shared by the decoding of 2η test-vectors.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 27,2025 at 02:36:20 UTC from IEEE Xplore. Restrictions apply.

LIANG et al.: LCC DECODING OF HERMITIAN CODES WITH IMPROVED INTERPOLATION AND ROOT-FINDING 5515

C. Uncommon Computation

The uncommon computation further completes the con-
struction of the module basis for each individual transformed
test-vector, and subsequently reduces them into the desired
Gröbner bases. Based on (42), in order to construct the module
basis for different test-vectors, polynomial K(u)

Θc needs to be
further computed. Hence, the isomorphic module basis MP̃u

w.r.t. each transformed test-vector can be formed as in (34).
Afterwards, the Mulders-Storjohann (MS) algorithm [32] will
be applied to reduce MP̃u

into the desired Gröbner basis
which contains the minimum polynomial Q̃u of IP̃u

.
Since Q̃u can be written as

Q̃u(x, y, z) = Q̃(0)
u (x, y) + Q̃(1)

u (x, y) · z, (43)

which interpolates all points of P̃u, based on (38), it can be
restored into Qu by

Qu(x, y, z) = GΓ(x)Q̃(0)
u (x, y) + Q̃(1)

u (x, y) · (z −KΓ).
(44)

It interpolates all points of P(u).
The ReT-assisted BR interpolation for LCC decoding is

summarized as in Algorithm 1. Since the uncommon com-
putation for different test-vectors can be performed in a
fully parallel manner, it not only results in a low decoding
complexity, but also a low decoding latency.

Algorithm 1 The ReT-Assisted BR Interpolation
Input: Π, ω;
Output: Qu;
1: Formulate 2η test-vectors ωu as in (16);
2: Perform the re-encoding and transform ωu yielding zu as

in (20);
3: Construct the common computation in basis construction

as in (36), (37) and (40);
4: for u = 0 to 2η − 1 do
5: Complete the construction of MP̃u

for each test-vector
as in (37) and (41);

6: Perform the MS algorithm, reducing MP̃u
into a

Gröbner basis;
7: Identify the minimum polynomial in the reduced MP̃u

as Q̃u;
8: Restore Q̃u into Qu.
9: end for

V. FAST ROOT-FINDING

In LCC decoding, the root-finding needs to be performed
for 2η decoding events. Its complexity becomes remarkably
high as η increases. Therefore, it is important to reduce the
complexity of root-finding. This section proposes the FRF
for the LCC decoding. It computes the estimated codewords
based on the interpolation outcomes, and hence eliminates
the redundant re-encoding computation that is required for
identifying the most likely codeword candidate.

Recall that Qu is the interpolation polynomial that interpo-
lates all points of P(u). Let

Tu(x, y) = GΓ(x)Q̃(0)
u (x, y). (45)

Suppose that there exists a polynomial f̃u(x, y) ∈ L(µP∞)
satisfying

Tu + Q̃(1)
u · f̃u = 0, (46)

it can be determined as

f̃u = − Tu

Q̃(1)
u

. (47)

The estimated message polynomial f̂u can be further deter-
mined as

f̂u = f̃u +KΓ. (48)

Let ĉu = (ĉ(u)
0 , ĉ

(u)
1 , . . . , ĉ

(u)
n−1) and c̃u =

(c̃(u)
0 , c̃

(u)
1 , . . . , c̃

(u)
n−1) denote the corresponding codewords of

f̂u and f̃u, respectively, which are obtained in the encoding
fashion of (5). Hence, the estimated codeword symbol ĉ(u)

j

can be determined as

ĉ
(u)
j = f̂u(Pj)

= f̃u(Pj) +KΓ(Pj)

= c̃
(u)
j + hj . (49)

Therefore, based on (47) and (49), the estimated codeword
ĉu can be computed directly from the interpolation outcomes.
Within the Chase decoding output list, the most likely code-
word candidate will be chosen, which is denoted as ĉ =
(ĉ0, ĉ1, . . . , ĉn−1). Note that the decoded message polynomial,
denoted by f̂(x, y), can be obtained by unencoding ĉ [33]. The
proposed FRF is further built upon the realization of (47),
which needs to be categorized into the following five cases.

Case I: Based on (46) and (48),

Tu(Pj) + Q̃(1)
u (Pj) · (ĉ(u)

j − hj) = 0,∀j ∈ [0 : n− 1]. (50)

Since Qu interpolates all points of P(u),

Tu(Pj) + Q̃(1)
u (Pj) · (ω(u)

j − hj) = 0, ∀j ∈ [0 : n− 1]. (51)

Therefore, if Q̃(1)
u (Pj) ̸= 0, ĉ(u)

j = ω
(u)
j , which indicates that

ω
(u)
j is correct.
Case II: If Tu(Pj) = Q̃(1)

u (Pj) = 0, the partial derivatives
of Tu and Q̃(1)

u are needed such that

f̃u(Pj) = −∂Tu

∂x

/∂Q̃(1)
u

∂x

∣∣∣
Pj

. (52)

Note that for the Hermitian curve Hw defined in (1),

∂xw+1

∂x
=
∂yw

∂x
+
∂y

∂x
. (53)

Since q = w2,

∂xw+1

∂x
= (w + 1) · xw = xw (54)

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 27,2025 at 02:36:20 UTC from IEEE Xplore. Restrictions apply.

5516 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 8, AUGUST 2025

and
∂yw

∂x
= w · yw−1 · ∂y

∂x
= 0. (55)

Therefore, (53) can be written as
∂y

∂x
= xw. (56)

Consequently, (52) can be calculated with the assistance of
(56).

If both Tu(Pj) = Q̃(1)
u (Pj) = 0 and ∂Tu

∂x |Pj
= ∂Q̃(1)

u

∂x |Pj
=

0, the estimated codeword symbols cannot be determined
by Cases I and II. Their estimations need to be realized
through either the erasure decoding, or the RCS process. Let
Λu = {j | Tu(Pj) = Q̃(u)

1 (Pj) = ∂Tu

∂x |Pj
= ∂Q̃(1)

u

∂x |Pj
= 0}.

Let Du = S([0 : n − 1]\C(Λu)). The following lemma
describes the erasure decoding that is used to recover the
symbols associated with Λu.

Lemma 6: Given Du and {c̃(u)
j | ∀j ∈ Du}, let

KDu
(x, y) =

∑
j∈Du

c̃
(u)
j LDu,j(x, y). (57)

It satisfies c̃(u)
j = KDu

(Pj),∀j ∈ Du. If |Du| ≥ w
⌈

k+g
w

⌉
, the

symbols associated with Λu can be recovered by

c̃
(u)
j = KDu

(Pj),∀j ∈ Λu. (58)

Case III: Based on Lemma 6, if |Du| ≥ w
⌈

k+g
w

⌉
, the

symbols associated with Λu will be recovered using the erasure
decoding as in (57) and (58).

Case IV: If |Du| < w
⌈

k+g
w

⌉
, the symbols associated with

Λu cannot be recovered using the above erasure decoding.
As a result, the RCS algorithm remains the only solution.

Case V: If Tu(Pj) ̸= 0 but Q̃(1)
u (Pj) = 0, or ∂Tu

∂x |Pj
̸=

0 but ∂Q̃(1)
u

∂x |Pj = 0, the number of errors in this test-vector
exceeds the decoding capability. In this case, root-finding for
this test-vector will be terminated.

After computing c̃
(u)
j , the estimated codeword symbol can

be obtained as in (49). The most likely codeword candidate
ĉ will be chosen from the decoding output list. Note that the
unencoding can be performed to further retrieve the message
polynomial as [33]

f̂(x, y) =
∑

j∈[0:n−1]

ĉjLj(x, y). (59)

Unlike the RCS algorithm [5], [6], [7] that estimates the
message symbols in a successive manner, the FRF can estimate
all codeword symbols in parallel. Afterwards, the message that
corresponds to the most likely codeword will be chosen as the
decoding output. It should be noted that in case of using the
RCS algorithm, all estimated messages need to be encoded.
So far, the one that produces the most likely codeword will be
identified as the decoding output. The proposed FRF avoids
this expensive encoding operation. Note that the proposed FRF
and the FF in [23] differ in Case I. Besides Q̃(1)

u , the FF
should also compute the evaluation of Tu. Therefore, the FRF
yields a slightly lower complexity than the FF. The FRF is
summarized as in Algorithm 2.

Algorithm 2 The FRF Algorithm

Input: GΓ, Q̃(u), h;
Output: ĉ, f̂ ;
1: for u = 0 to 2η − 1 do
2: Calculate Tu as in (45);
3: for j = 0 to n− 1 do
4: Case I: ĉ

(u)
j = ω

(u)
j ;

5: Case II: Determine c̃(u)
j as in (52);

6: Case III: Recover the symbols as in (57) and (58);
7: Case IV: Perform the RCS algorithm;
8: Case V: Terminate root-finding for this test-vector;
9: end for

10: Obtain ĉu as in (49);
11: end for
12: Choose the most likely codeword candidate ĉ and obtain

f̂ as in (59).

VI. DECODING WITH EARLY TERMINATION

Equipped with the above proposed BR interpolation and
FRF, the LCC decoding can process the 2η test-vectors in a
parallel manner, resulting in a low decoding latency. However,
its decoding complexity remains challengingly high for prac-
tice. This section proposes two early termination strategies for
the decoding. Consequently, the decoding complexity can be
reduced by eliminating the redundant decoding computation.
The decoding will be terminated once a codeword that satisfies
the ML criterion [24], [25] is found. It has been noticed that
as the channel condition improves, such a codeword can be
found at an earlier decoding stage. We show that the ML
criterion can be used to assess the re-encoding codeword. Once
it satisfies the ML criterion, the decoding will be terminated.
If all test-vectors are decoded in a sequential manner, we show
that they can be decoded progressively in an order supported
by their reliabilities. During the progressive decoding, module
basis update is needed. Once an ML codeword is found, the
decoding will also be terminated.

A. Early Termination Through Re-Encoding

Based on Section III-B, a re-encoding codeword h is gen-
erated as in (19). A straightforward method is to use the ML
criterion to assess h. If h is an ML codeword, the decoding
will be terminated. Note that if the Hamming distance between
h and ω is smaller, it is more likely that h satisfies the ML
criterion. However, since at most w⌊k−g

w ⌋ points are chosen
for generating h, it is only guaranteed that h and ω have
w⌊k−g

w ⌋ identical symbols. Hence, h can rarely satisfy the
ML criterion. As mentioned in Section III-B, the re-encoding
can be considered as the erasure decoding. As the channel
condition improves, ω becomes less corrupted. Based on
Lemma 6, the erasure decoding that is similar to (57) and (58)
can be used to generate a re-encoding codeword. It should
have a smaller Hamming distance to ω under this condition.
Let T denote the affine point index set for generating such
a codeword. In order to ensure that the erasure decoding

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 27,2025 at 02:36:20 UTC from IEEE Xplore. Restrictions apply.

LIANG et al.: LCC DECODING OF HERMITIAN CODES WITH IMPROVED INTERPOLATION AND ROOT-FINDING 5517

succeeds, T shall include more reliable symbol positions. Let
us initialize T as T = S([0 : n − 1]), and j̃ denote the least
reliable position in T . T shall be further updated as

T = T \C(j̃). (60)

This above position exclusion continues until |T | ≤ w⌈k+g
w ⌉.

Note that the erasure decoding based on T does not always
yield an (n, k) Hermitian codeword, let alone a codeword
that satisfies the ML criterion. Therefore, after updating T ,
another affine point index set Γ′ will continue to be generated.
It needs to satisfy the same constraints as Γ of Lemma 1. Let
us initialize Γ′ as Γ′ = T , and j′ denote the least reliable
position in Γ′. Γ′ shall be updated as

Γ′ = Γ′\C(j′). (61)

This above position exclusion of Γ′ continues until |Γ′| ≤
w⌊k−g

w ⌋ and Γ′∩C(Θc) = ∅. If an (n, k) Hermitian codeword
is not yielded based on T , Γ′ will be utilized to generate a
re-encoding codeword and transform P(u) in the same way as
Γ in Section III-B.

Example 3 (Continued): In decoding the (8, 5) Hermitian
code mentioned in Example 2, η = 3, Θ = {4, 6, 0, 3, 5} and
Θc = {7, 1, 2}. Let T = {0, 1, 2, 3, 4, 5, 6, 7}. It is updated
into {0, 1, 4, 5, 6, 7}. Let Γ′ = {0, 1, 4, 5, 6, 7}. It is further
updated into {4, 5}.

Based on T and Γ′, the re-encoding polynomials are defined
as

KT (x, y) =
∑
j∈T

ωjLT ,j(x, y) (62)

and

KΓ′(x, y) =
∑
j∈Γ′

ωjLΓ′,j(x, y), (63)

respectively. As in (62) and (63), LT ,j and LΓ′,j should be
computed. The above description shows that Γ′ ⊆ T . Hence,
LT ,j can be computed upon LΓ′,j , indicating that KT and KΓ′

can be derived by sharing common computations. In particular,
if j ∈ Γ′,

LT ,j = LΓ′,j ·
∏

α∈A(T \Γ′)

x− α

xj − α
. (64)

After constructing KT , it is necessary to check if KT ∈
L(µP∞).
If so, a Hermitian codeword h̃ = (h̃0, h̃1, . . . , h̃n−1) will be
generated by

h̃j = KT (Pj),∀j ∈ [0 : n− 1]. (65)

If h̃ satisfies the ML criterion, the decoding will be terminated.
If KT /∈ L(µP∞), or h̃ cannot satisfy the ML criterion,
another Hermitian codeword h′ will be generated by

h′j = KΓ′(Pj),∀j ∈ [0 : n− 1]. (66)

It can still play a similar role as h does for the ReT.
It is observed that if the received symbols associated with

T are more reliable, it is more likely that KT can generate
an (n, k) Hermitian codeword. Therefore, the reliability πiIj ,j

can be utilized to assess the received symbols associated with
T in determining whether KT should be computed. Let πthrd

denote the reliability threshold. If πiIj ,j ≥ πthrd, ∀j ∈ T , KT
will be computed. Otherwise, only KΓ′ will be computed for
the ReT. We will show that by carefully choosing πthrd, the
computation of KT can only be attempted if T is reliable
enough, avoiding redundant computation.

Remark 1: The re-encoding described in this section can
replace the one described in Section III-B. However, the
erasure decoding operations of (62) and (65) cannot always
yield an (n, k) Hermitian codeword. If the erasure decoding
fails, this computation becomes redundant. It can also be
aware that although the early termination through re-encoding
can reduce the decoding latency, the cost associated with
computing KT and h̃ is considerable. Therefore, this re-
encoding method is only proposed as an alternative to that
of Section III-B, if the early termination of the LCC decoding
is desirable.

B. Early Termination Through Ordering the Test-Vectors

Given a test-vector ωu = (ω(u)
0 , ω

(u)
1 , . . . , ω

(u)
n−1), its relia-

bility can be determined by

Ωu =
n−1∏
j=0

π
i
(u)
j ,j

, (67)

where i(u)
j = index{σi | σi = ω

(u)
j }. A greater Ωu indicates

ωu is more reliable. It is considered to be more likely to yield
the intended message. It should be decoded earlier. Since all
test-vectors share the common symbols ω(u)

j with j ∈ Θ, their
reliabilities can be compared by only assessing

Ω̂u =
∏

j∈Θc

π
i
(u)
j ,j

. (68)

Based on Ω̂u, all test-vectors are ordered, yielding
ωu0

, ωu1
, . . . , ωu2η−1

, where Ω̂u0 ≥ Ω̂u1 ≥ · · · ≥ Ω̂u2η−1 .
The decoding will process the test-vectors in the above order,
leading to the progressive decoding [26], [27]. Once an ML
codeword is found, the decoding will be terminated.

In this progressive LCC decoding, the module basis of ωu0

will be first constructed. That says instead of computing (40),
K(u0)

Γc as in (33) will be computed directly. If the decoding of
ωu0

cannot produce an ML codeword, ωu1
will be decoded.

It can be observed that for the 2η module bases MP̃u
of the

test-vectors, M̃ (0)
u , M̃ (1)

u , . . . , M̃ (w−1)
u are common, while

M̃
(w)
u , M̃ (w+1)

u , . . . , M̃ (2w−1)
u are uniquely determined by

test-vector ωu. Let Ξuζ
= {j | ω(uζ)

j ̸= ω
(uζ+1)
j , j ∈ Θc}

denote the index set of different symbols between ωuζ
and

ωuζ+1
. It can be used to formulate polynomial Wuζ

as

Wuζ
=

∑
j∈Ξuζ

(z̃j
(uζ) − z̃j

(uζ+1))LΓc,j . (69)

Based on (69), after decoding test-vector ωuζ
, K(uζ+1)

Γc can be
updated as

K(uζ+1)
Γc = K(uζ)

Γc +Wuζ
. (70)

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 27,2025 at 02:36:20 UTC from IEEE Xplore. Restrictions apply.

5518 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 8, AUGUST 2025

Therefore, MP̃uζ+1
can be generated based on MP̃uζ

and
Wuζ

. The progressive decoding process will be conducted
sequentially. It will be terminated once an ML codeword is
found. It has been observed that the codeword that satisfies the
ML criterion can often be identified by decoding the first few
test-vectors, especially when the channel condition is good.
This leads to a more significant complexity reduction.

VII. DECODING COMPLEXITY AND LATENCY

This section analyses the decoding complexity and latency.
The decoding complexity is measured as the average number
of finite field multiplications in decoding a codeword. The
decoding latency is measured as the average simulation time
required in decoding a codeword. First, the theoretical charac-
terization of the complexity is analysed. We focus on the BR
interpolation complexity reduction effect brought by the ReT,
as well as the complexity advantage of the proposed FRF over
the existing RCS algorithm.

We first consider the effect of ReT in reducing the BR
interpolation complexity. The common computation in basis
construction needs to compute GΓc and KΓ, where computing
the latter one dominates the complexity. Since degxLΓc,j ≤
n−ξ
w − 1 and degyLΓc,j ≤ w − 1, the asymptotic complexity

of computing KΓ is O((n − ξ)2). Similar to the common
computation, the uncommon computation needs to compute
K(u)

Θc for each test-vector. Since there are 2η test-vectors, the
asymptotic complexity of computing K(u)

Θc is O(2ηη(n− ξ)).
Without the ReT, the asymptotic complexities of common
computation and uncommon computation in basis construction
are O(n(n− η)) and O(2ηηn), respectively. Therefore, it can
be seen that the ReT helps reduce the basis construction
complexity by a factor of ξ

n .
The basis reduction complexity is mainly determined by the

maximum polynomial in each module basis. Without the ReT,
the maximum polynomial is yw−1Ku. Its weighted degree
is n + 2w2−w − 2. The asymptotic complexity of basis
reduction is O(2ηn2). With the ReT, polynomial yw−1K(u)

Γc

has the maximum weighted degree. Its weighted degree is
n + 2w2−w − 2 − ξ. The asymptotic complexity of basis
reduction is O(2η(n−ξ)2). Therefore, the ReT can also reduce
the basis reduction complexity.

For the FRF, our simulations show that Cases I and II are
the major FRF events. Their computations mainly consist of
polynomial evaluations, which can be performed in parallel.
This feature will be welcomed by practical implementation.
Their asymptotic complexities are O(2ηEn) and O(2ηE(n −
ξ)), respectively, where E denotes the number of errors. For
the RCS algorithm [5], [6], [7], it exhibits an asymptotic
complexity of O(2ηk(n−ξ)). Note that the Chase decoding is
often applied to decode high-rate codes. For high-rate codes,
if the decoding can produce a valid output codeword, there
is E < k. Therefore, the FRF has a complexity advantage
over the RCS algorithm. Please note that in the LCC decod-
ing, the estimated codewords should be generated, so that
the most likely codeword candidate and its message can be
identified as the decoding output. For the RCS algorithm,

TABLE I
COMPLEXITY IN DECODING OF THE (64, 39) HERMITIAN CODE

TABLE II
COMPLEXITY IN DECODING OF THE (64, 49) HERMITIAN CODE

it needs to encode the 2η estimated messages to generate
the estimated codewords, exhibiting an asymptotic complexity
of O(2ηkn). The FRF can compute the estimated codewords
directly from the interpolation outcomes. It can avoid this
expensive encoding operation. After identifying the most likely
codeword candidate, only one unencoding computation will
be performed to retrieve the estimated message, exhibiting an
asymptotic complexity of O(n2).

We further show the numerical results of decoding complex-
ity and latency. These results were obtained by implementing
the decoding schemes using the C programming language
and on the AMD R7-5800U CPU. Binary phase-shift key-
ing (BPSK) modulation was used for simulation over the
additive white Gaussian noise (AWGN) channel. Tables I
and II show the complexity comparison in decoding the
(64, 39) and the (64, 49) Hermitian codes, respectively. These
results were obtained under a signal-to-noise ratio (SNR) of
7.0 dB. The complexities of ReT, common computation in BR
interpolation and common element interpolation in Kötter’s
interpolation (both marked as CC), uncommon computation
in BR interpolation and uncommon element interpolation in
Kötter’s interpolation (both marked as UC), and root-finding
(marked as RF) are listed. The complexity of the proposed
LCC decoding with ReT-assisted BR interpolation and FRF
(marked as LCC (ReT-BR-FRF)) is compared with the LCC
decoding with BR interpolation and RCS algorithm (marked
as LCC (BR-RCS)) and the LCC decoding with ReT-assisted
Kötter’s interpolation and RCS algorithm (marked as LCC
(ReT-Kötter-RCS)). Comparing the complexities of common
and uncommon computations of the LCC (BR-RCS) and
the LCC (ReT-BR-FRF), it can be seen that the latter one
yields a lower BR interpolation complexity, indicating that
the ReT helps reduce the BR interpolation complexity. This

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 27,2025 at 02:36:20 UTC from IEEE Xplore. Restrictions apply.

LIANG et al.: LCC DECODING OF HERMITIAN CODES WITH IMPROVED INTERPOLATION AND ROOT-FINDING 5519

Fig. 3. Decoding complexity in decoding the (64, 49) Hermitian code.

Fig. 4. Decoding complexity in decoding the (512, 409) Hermitian code.

validates the aforementioned complexity analysis of the ReT.
Comparing the interpolation complexities of the LCC (ReT-
Kötter-RCS) and the LCC (ReT-BR-FRF), it can be seen that
although Kötter’s interpolation and BR interpolation exhibit a
similar theoretical asymptotic complexity, the numerical result
of BR interpolation is slightly lower than that of Kötter’s
interpolation. Comparing their complexities of root-finding,
the FRF can provide a significant gain in reducing complexity
over the RCS algorithm. The complexity advantage of the
proposed LCC (ReT-BR-FRF) emerges for the high-rate codes,
This demonstrates its practical merit.

Figs. 3 and 4 show our numerical results of how the
decoding complexity varies as the SNR changes in decod-
ing the (64, 49) and the (512, 409) Hermitian codes. The
prototype LCC decoding in [20] and the LCC decoding
with ReT-assisted Kötter’s interpolation and FF (marked as
LCC (ReT-Kötter-FF)) in [23] are used as the comparison
benchmarks. We have also included simulation results of the
proposed LCC decoding with ReT-assisted BR interpolation
and FRF, one with early termination through re-encoding and
ordering test-vectors (marked as LCC (ReT-BR-FRF-ET)),
and another without early termination (i.e., LCC (ReT-BR-
FRF)). Recall that πthrd is defined in Section VI. A as the
reliability threshold. For the LCC (ReT-BR-FRF-ET), we set
πthrd = 0.6 and 0.8 for the (64, 49) and the (512, 409)

TABLE III
AVERAGE LATENCY (MS) COMPARISON IN LCC DECODING OF THE

(64, 49) HERMITIAN CODE

TABLE IV
AVERAGE LATENCY (S) COMPARISON IN LCC DECODING OF THE

(512, 409) HERMITIAN CODE

Hermitian codes, respectively. As shown in these figures,
compared with the prototype LCC decoding, the other three
algorithms achieve a much lower complexity. The LCC (ReT-
BR-FRF-ET) outperforms the other three algorithms. As the
SNR increases, its complexity advantage becomes more sig-
nificant. When the SNR is high, early termination through
re-encoding occurs frequently, maintaining the average decod-
ing complexity at a certain level regardless of whether η
is small or large. Note that the LCC (ReT-Kötter-FF) and
the LCC (ReT-BR-FRF) have a similar complexity. However,
since the uncommon computation in BR interpolation can
be performed in parallel, the LCC (ReT-BR-FRF) can yield
a much lower latency, as shown in the following decoding
latency simulations.

Tables III and IV show our numerical results of decoding
latency. It is shown that the other three algorithms yield a
lower latency than the prototype LCC decoding, attributed to
the contributions of the ReT and the more advanced root-
finding algorithms. Furthermore, due to the fully parallel
nature of the uncommon computation in BR interpolation,
the LCC (ReT-BR-FRF) yields a lower latency than the LCC
(ReT-Kötter-FF). When the SNR is low, since the LCC (ReT-
BR-FRF-ET) processes the test-vectors in a serial manner and
the early termination is rarely achieved, the LCC (ReT-BR-
FRF-ET) yields a higher latency over the LCC (ReT-BR-FRF).
However, when the SNR is high, the early termination occurs
frequently. The LCC (ReT-BR-FRF-ET) yields the lowest
latency. As the SNR increases, its latency advantage becomes
more significant.

VIII. DECODING PERFORMANCE

This section shows the decoding performance of the pro-
posed algorithms. They are measured as the frame error

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 27,2025 at 02:36:20 UTC from IEEE Xplore. Restrictions apply.

5520 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 8, AUGUST 2025

Fig. 5. Decoding performance comparison of the (15, 11) RS code and the
(64, 49) Hermitian code.

Fig. 6. Decoding performance comparison of the (63, 50) RS code and the
(512, 409) Hermitian code.

rate (FER). Note that since the error correction capability
of LCC decoding is mainly determined by η, the proposed
decoding algorithms maintain the decoding performance of
the prototype LCC algorithm. Figs. 5 and 6 compare the
(64, 49) and the (512, 409) Hermitian codes with the RS codes
defined over the same finite fields. The two RS codes have
similar code rates as the Hermitian codes. Over the same finite
field, the Hermitian codes are longer with a stronger error-
correction capability. Hence, the two Hermitian codes yield
better decoding performance over the two RS codes, respec-
tively. Additionally, our results demonstrate that the LCC
decoding schemes outperform the GS hard-decision decoding,
highlighting the advantages of utilizing soft information to
improve error correction capability. As η increases, leading to
more test-vectors being decoded, the decoding performance
also improves.

IX. CONCLUSION

This paper has proposed the LCC decoding for Hermitian
codes, which is facilitated by both the ReT-assisted BR
interpolation and FRF. The ReT has been introduced through
defining the Lagrange interpolation polynomials at the Her-
mitian function fields, reducing both interpolation complexity
and latency. The BR interpolation which yields the Gröbner
basis of each Chase decoding event is further performed

to obtain the interpolation polynomial. The 2η root-finding
processes are further facilitated by the FRF, which can obtain
codeword candidates directly from the interpolation outcomes.
It eliminates the redundant computation of re-encoding for
identifying the most likely codeword candidate. The average
LCC decoding complexity can be reduced by assessing the
re-encoding codeword and decoding the ordered test-vectors
progressively. They both result in early termination when an
ML codeword is found. Our simulation results demonstrate
that the decoding complexity and latency can be efficiently
reduced over existing decoding algorithms for Hermitian
codes.

APPENDIX

PROOF OF LEMMA 1

Since LΓ,j(Pj) = 1 and LΓ,j(Pj′) = 0, if j ̸= j′, where
j, j′ ∈ Γ, we have KΓ(Pj) = ωj ,∀j ∈ Γ. Since ξ ≤ w⌊k−g

w ⌋
and the affine points defined by Γ form a maximum semi-grid,
the ξ points chosen for re-encoding can be categorized into at
most ⌊k−g

w ⌋ groups. Points of each group share the same x-
coordinate. For LΓ,j , we have |A(Γ)\{xj}| ≤ ⌊k−g

w ⌋ − 1 and
|Bxj (Γ)\{yj}| = w − 1. Hence,

deg1,wz
LΓ,j ≤ w(⌊k − g

w
⌋ − 1) + (w + 1)(w − 1)

≤ k−g−w + w2 − 1
= µ. (71)

Further based on (6), it can be seen that KΓ ∈ L(µP∞).

PROOF OF LEMMA 2

If Qu ∈ IP(u) , Qu can be generated by H(κ)
u as in (23).

Let H′u
(κ)(x, y, z) = H(κ)

u (x, y, z +KΓ) as

H′u
(κ) = G1−κ(z +KΓ −Ku)κ. (72)

Since Ku(Pj)−KΓ(Pj) = ω
(u)
j −hj = zj , H′u

(κ) interpolates
the transformed interpolation points of P′u with a multiplicity
of one, i.e. H′u

(κ) ∈ IP′u . Therefore, if Qu ∈ IP(u) , Q′u ∈ IP′u ,
and vice versa.

Since deg1,wz
KΓ ≤ µ, we have deg1,wz

z = deg1,wz
(z +

KΓ) and deg1,wz
Q′u = deg1,wz

Qu. Let us assume that Qu is
the minimum polynomial of IP(u) . If there exists N ′ ∈ IP′u
and exhibits deg1,wz

N ′ < deg1,wz
Q′u, N = N ′(x, y, z −

KΓ) ∈ IP(u) and deg1,wz
N = deg1,wz

N ′. It leads to
deg1,wz

N < deg1,wz
Qu, which contradicts to Qu being the

minimum polynomial of IP(u) . Therefore, Q′u is the minimum
polynomial of IP′u , and vice versa.

PROOF OF LEMMA 3

Since GΓc and z−K(u)
Γc interpolate all points of P̃u, M̃ (s)

u ∈
IP̃u

. For any Q ∈ IP̃u
, there exists V0,V1 ∈ R such that

Q = V0M̃
(0)
u + V1M̃

(w)
u . Since Vκ =

∑w−1
ι=0 Wκ,ιy

ι, where
Wκ,ι ∈ Fq[x] and κ = 0 or 1, Q =

∑1
κ=0

∑w−1
ι=0 Wκ,ιy

ιH̃(κ)
u .

Therefore, IP̃u
can be generated by MP̃u

.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 27,2025 at 02:36:20 UTC from IEEE Xplore. Restrictions apply.

LIANG et al.: LCC DECODING OF HERMITIAN CODES WITH IMPROVED INTERPOLATION AND ROOT-FINDING 5521

PROOF OF LEMMA 4

Based on (27), deg1,wz
GΓ = ξ. Based on (32), it is

known that Qu = GΓQ̃u(x, y, z−KΓ
GΓ

). Let Q̃u(x, y, z) =
Q̃(0)

u (x, y) + Q̃(1)
u (x, y)z. Since deg1,wz

KΓ ≤ µ,

deg1,wz
Qu = ξ + deg1,wz

Q̃u(x, y,
z −KΓ

GΓ
)

= ξ + deg1,wz
(Q̃(0)

u + Q̃(1)
u

z −KΓ

GΓ
)

= ξ + max
0≤j≤1

{deg1,wz
[Q̃(j)

u + j(wz − ξ)]}. (73)

Therefore, deg1,wz
Qu = deg1,w̃z

GΓ + deg1,w̃z
Q̃u.

PROOF OF LEMMA 5

The mapping of (32) shows that if Q̃u ∈ IP̃u
, Q′u ∈

IP′u . Let us assume that Q̃u is the minimum polynomial of
IP̃u

. If there exists a polynomial N ′ ∈ IP′u that satisfies
deg1,wz

N ′ < deg1,wz
Q′u, GΓ(x)Ñ(x, y, z

GΓ
) = N ′(x, y, z).

Based on Lemma 4, deg1,w̃z
GΓ + deg1,w̃z

Ñ < deg1,w̃z
GΓ +

deg1,w̃z
Q̃u, which contradicts to Q̃u being the minimum

polynomial of IP̃u
. Hence, if Q̃u is the minimum polynomial

of IP̃u
, Q′u(x, y, z) = GΓ(x)Q̃u(x, y, z

GΓ
) is the minimum

polynomial of IP′u . Further based on Lemma 2, if Q′u is the
minimum polynomial of IP′u , Qu(x, y, z) = Q′u(x, y, z−KΓ)
is also the one of IP(u) .

PROOF OF LEMMA 6

Since LDu,j(Pj) = 1 and LDu,j(Pj′) = 0, if j ̸= j′, where
j, j′ ∈ Du, we have KDu

(Pj) = c̃
(u)
j ,∀j ∈ Du.

The symbols of {c̃(u)
j | ∀j ∈ Du} can be under-

stood as erasing n − |Du| symbols of c̃u, or the codeword
symbols of a punctured Hermitian code. For a punctured
Hermitian code, where the affine points associated with
the unpunctured positions form a maximum semi-grid, the
corresponding message polynomial can be computed using
Lagrange interpolation [33]. Since the affine points defined
by Du form a maximum semi-grid, KDu ∈ L(µP∞). Let ς =
(ς0, ς1, . . . , ςn−1) where ςj = KDu(Pj),∀j ∈ [0 : n−1]. Since
the designed distance of Hermitian codes is d∗ = n−k−g+1,
if ς ̸= c̃u, we have
|{j | c̃(u)

j ̸= ςj}| ≥ d∗. If |Du| ≥ w⌈k+g
w ⌉ ≥ k + g,

|{j | c̃(u)
j ̸= ςj}| ≤ n−k−g. This is a contradiction. Therefore,

ς = c̃u. As a result, the n − |Du| erasures of c̃u including
the symbols associated with Λu can be recovered as in (57)
and (58).

REFERENCES

[1] V. D. Goppa, “Codes associated with divisors,” Problemy Peredachi
Informatsii, vol. 13, no. 1, pp. 33–39, 1977.

[2] J. Massey, “Shift-register synthesis and BCH decoding,” IEEE Trans.
Inf. Theory, vol. IT-15, no. 1, pp. 122–127, Jan. 1969.

[3] S. Sakata, J. Justesen, Y. Madelung, H. E. Jensen, and T. Hoholdt, “Fast
decoding of algebraic-geometric codes up to the designed minimum
distance,” IEEE Trans. Inf. Theory, vol. 41, no. 6, pp. 1672–1677,
Nov. 1995.

[4] V. Guruswami and M. Sudan, “Improved decoding of Reed–Solomon
and algebraic-geometric codes,” IEEE Trans. Inf. Theory, vol. 45, no. 6,
pp. 1757–1767, Sep. 1999.

[5] R. M. Roth and G. Ruckenstein, “Efficient decoding of Reed–Solomon
codes beyond half the minimum distance,” IEEE Trans. Inf. Theory,
vol. 46, no. 1, pp. 246–257, Jan. 2000.

[6] X.-W. Wu and P. H. Siegel, “Efficient root-finding algorithm with
application to list decoding of algebraic-geometric codes,” IEEE Trans.
Inf. Theory, vol. 47, no. 6, pp. 2579–2587, Sep. 2001.

[7] L. Chen, R. A. Carrasco, M. Johnston, and E. G. Chester, “Efficient
factorisation algorithm for list decoding algebraic-geometric and Reed–
Solomon codes,” in Proc. IEEE Int. Conf. Commun., Glasgow, U.K.,
Jun. 2007, pp. 851–856.

[8] R. Kötter, “On algebraic decoding of algebraic-geometric and cyclic
codes,” Ph.D. thesis, Dept. Elect. Eng., Univ. Linköping, Linköping,
Sweden, 1996.

[9] K. Lee and M. O’Sullivan, “List decoding of Reed–Solomon codes
from a Gröbner basis perspective,” J. Symbolic Comput., vol. 43, no.
9, pp. 645–658, Sep. 2008.

[10] K. Lee and M. E. O’Sullivan, “List decoding of Hermitian codes using
Gröbner bases,” J. Symbolic Comput., vol. 44, no. 12, pp. 1662–1675,
Dec. 2009.

[11] J. S. R. Nielsen and P. Beelen, “Sub-quadratic decoding of one-
point Hermitian codes,” IEEE Trans. Inf. Theory, vol. 61, no. 6,
pp. 3225–3240, Jun. 2015.

[12] P. Beelen, J. Rosenkilde, and G. Solomatov, “Fast decoding of AG
codes,” IEEE Trans. Inf. Theory, vol. 68, no. 11, pp. 7215–7232,
Nov. 2022.

[13] P. Beelen and V. Neiger, “Faster list decoding of AG codes,” 2023,
arXiv:2304.07083.

[14] R. Koetter, J. Ma, and A. Vardy, “The re-encoding transformation
in algebraic list-decoding of Reed–Solomon codes,” IEEE Trans. Inf.
Theory, vol. 57, no. 2, pp. 633–647, Feb. 2011.

[15] Y. Wan, L. Chen, and F. Zhang, “Guruswami–Sudan decoding of elliptic
codes through module basis reduction,” IEEE Trans. Inf. Theory, vol. 67,
no. 11, pp. 7197–7209, Nov. 2021.

[16] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of
Reed–Solomon codes,” IEEE Trans. Inf. Theory, vol. 49, no. 11,
pp. 2809–2825, Nov. 2003.

[17] L. Chen, R. Carrasco, and M. Johnston, “Soft-decision list decoding of
Hermitian codes,” IEEE Trans. Commun., vol. 57, no. 8, pp. 2169–2176,
Aug. 2009.

[18] K. Lee and M. E. O’Sullivan, “Algebraic soft-decision decoding
of Hermitian codes,” IEEE Trans. Inf. Theory, vol. 56, no. 6,
pp. 2587–2600, Jun. 2010.

[19] J. Bellorado and A. Kavcic, “Low-complexity soft-decoding algo-
rithms for Reed–Solomon codes—Part I: An algebraic soft-in hard-out
chase decoder,” IEEE Trans. Inf. Theory, vol. 56, no. 3, pp. 945–959,
Mar. 2010.

[20] S. Wu, L. Chen, and M. Johnston, “Interpolation-based low-complexity
chase decoding algorithms for Hermitian codes,” IEEE Trans. Commun.,
vol. 66, no. 4, pp. 1376–1385, Apr. 2018.

[21] L. Chen and F. Zhang, “Algebraic chase decoding of elliptic codes
through computing the Gröbner basis,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Espoo, Finland, Jun. 2022, pp. 180–185.

[22] J. Zhu and X. Zhang, “Factorization-free low-complexity chase soft-
decision decoding of Reed–Solomon codes,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), Taipei, Taiwan, May 2009, pp. 2677–2680.

[23] J. Liang and L. Chen, “Low-complexity chase decoding of Hermitian
codes with re-encoding transform and fast factorization,” in Proc.
IEEE Globecom Workshops (GC Wkshps), Kuala Lumpur, Malaysia,
Dec. 2023, pp. 1680–1685.

[24] T. Kaneko, T. Nishijima, H. Inazumi, and S. Hirasawa, “An efficient
maximum-likelihood-decoding algorithm for linear block codes with
algebraic decoder,” IEEE Trans. Inf. Theory, vol. 40, no. 2, pp. 320–327,
Mar. 1994.

[25] X. Ma and S. Tang, “Correction to ‘an efficient maximum-likelihood-
decoding algorithm for linear block codes with algebraic decoder,”’
IEEE Trans. Inf. Theory, vol. 58, no. 6, p. 4073, Jun. 2012.

[26] J. Zhao, L. Chen, X. Ma, and M. Johnston, “Progressive algebraic chase
decoding algorithms for Reed–Solomon codes,” IET Commun., vol. 10,
no. 12, pp. 1416–1427, Aug. 2016.

[27] J. Xing, L. Chen, and M. Bossert, “Low-complexity chase decoding of
Reed–Solomon codes using module,” IEEE Trans. Commun., vol. 68,
no. 10, pp. 6012–6022, Oct. 2020.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 27,2025 at 02:36:20 UTC from IEEE Xplore. Restrictions apply.

5522 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 8, AUGUST 2025

[28] I. F. Blake, C. Heegard, T. Høholdt, and V. K. Wei, “Algebraic-
geometry codes,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2596–2618,
Jan. 1998.

[29] R. Nielsen, “List decoding of linear block codes,” Ph.D. thesis, Dept.
Math., Tech. Univ. Denmark, Kongens Lyngby, Denmark, 2001.

[30] H. Stichtenoth, Algebraic Function Fields and Codes, 2nd ed., New
York, NY, USA: Springer-Verlag, 2009.

[31] T. Høholdt and R. Nielsen, “Decoding Hermitian codes with Sudan’s
algorithm,” in Applied Algebra, Algebraic Algorithms and Error
Correcting Codes (Lecture Notes in Computer Science), vol. 1719,
M. Fossorier, S. Lin, and A. Pole, Eds., Berlin, Germany: Springer-
Verlag, 1999, pp. 260–269.

[32] T. Mulders and A. Storjohann, “On lattice reduction for polynomial
matrices,” J. Symbolic Comput., vol. 35, no. 4, pp. 377–401, Apr. 2003.

[33] P. Beelen, J. Rosenkilde, and G. Solomatov, “Fast encoding of AG codes
over cab curves,” IEEE Trans. Inf. Theory, vol. 67, no. 3, pp. 1641–1655,
Mar. 2021.

Jiwei Liang received the B.E. degree in electronic
engineering from Southeast University, Nanjing,
China, in 2013, and the M.S. degree in com-
munication engineering from Guilin University of
Electronic Technology, Guilin, China, in 2017. He is
currently pursuing the Ph.D. degree in information
and communication engineering with Sun Yat-sen
University, Guangzhou, China.

In 2013, he was with Avonaco Communication
Systems Company Ltd., Suzhou, China, as a DSP
Engineer, where he was involved in the development

of multimedia communication systems. From 2017 to 2021, he was with
Allwinner Technology Company Ltd., Zhuhai, China, as a Firmware Engineer,
where he was involved in the development of WLAN/Bluetooth combo chip.
His research interests include channel coding and data communication.

Jianguo Zhao received the B.Sc. degree in informa-
tion engineering and the M.Sc. degree in information
and communication engineering from Sun Yat-sen
University, Guangzhou, China, in 2021 and 2024,
respectively. His research interests include channel
coding and data communications.

Li Chen (Senior Member, IEEE) received the B.Sc.
degree in applied physics from Jinan University,
China, in 2003, and the M.Sc. degree in communi-
cations and signal processing and the Ph.D. degree
in communications engineering from Newcastle
University, U.K., in 2004 and 2008, respectively.
From 2007 to 2010, he was a Research Associate
with Newcastle University. In 2010, he returned
China, as a Lecturer with the School of Information
Science and Technology, Sun Yat-sen University,
Guangzhou. From 2011 to 2012, he was a Visiting

Researcher with the Institute of Network Coding, The Chinese University
of Hong Kong, where he was an Associate Professor and a Professor
from 2011 and 2016. Since 2013, he has been the Associate Head of the
Department of Electronic and Communication Engineering (ECE). From July
2015 to October 2015, he was a Visitor with the Institute of Communications
Engineering, Ulm University, Germany. From October 2015 to June 2016,
he was a Visiting Associate Professor with the Department of Electrical
Engineering, University of Notre Dame, USA. From 2017 to 2020, he was the
Deputy Dean of the School of Electronics and Communication Engineering.
His research interests include information theory, error-correction codes,
and data communications. He is a Senior Member of Chinese Institute
of Electronics (CIE), a member of the IEEE Information Theory Society
Board of Governors and its External Nomination Committee, and the Chair
of its Conference Committee and the IEEE Information Theory Society
Guangzhou Chapter. He has been organizing several international conferences
and workshops, including the 2018 IEEE Information Theory Workshop
(ITW) at Guangzhou and the 2022 IEEE East Asian School of Information
Theory (EASIT) at Shenzhen, for which he is the General Co-Chair. He is
also the TPC Co-Chair of the 2022 IEEE/CIC International Conference on
Communications in China (ICCC) at Foshan. He was an Associate Editor of
IEEE TRANSACTIONS ON COMMUNICATIONS and is currently an Associate
Editor of IEEE TRANSACTIONS ON INFORMATION THEORY.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on August 27,2025 at 02:36:20 UTC from IEEE Xplore. Restrictions apply.

